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Abstract

In this paper, we propose an efficient and spectrally accurate numerical method for computing the dynamics of rotating
Bose–Einstein condensates (BEC) in two dimensions (2D) and 3D based on the Gross–Pitaevskii equation (GPE) with an
angular momentum rotation term. By applying a time-splitting technique for decoupling the nonlinearity and properly
using the alternating direction implicit (ADI) technique for the coupling in the angular momentum rotation term in the
GPE, at every time step, the GPE in rotational frame is decoupled into a nonlinear ordinary differential equation
(ODE) and two partial differential equations with constant coefficients. This allows us to develop new time-splitting spec-
tral methods for computing the dynamics of BEC in a rotational frame. The new numerical method is explicit, uncondi-
tionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, it is time reversible and
time transverse invariant, and conserves the position density in the discretized level if the GPE does. Extensive numerical
results are presented to confirm the above properties of the new numerical method for rotating BEC in 2D and 3D.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since the first experimental creation of a quantized vortex in a gaseous Bose–Einstein condensate (BEC)
[29,1,30,35], there has been significantly experimental and theoretical advances in the field of research
[3,34,2,11,5,13,23,14,17,19,22]. Several experimental methods of vortex creation are currently in use, including
phase imprinting [30,40], cooling of a rotating normal gas [24], and conversion of spin angular momentum
into orbital angular momentum by reversal of the magnetic bias field in an Ioffe–Pritchard trap [26,27,33].
The topic of this paper is to propose an efficient and spectrally accurate numerical method for studying quan-
tized vortex dynamics in a BEC by imposing a laser beam rotating with an angular velocity on the magnetic
trap holding the atoms to create a harmonic anisotropic potential.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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At temperatures T much smaller than the critical condensation temperature Tc, under mean field theory, the
properties of a BEC in a rotational frame are modelled by the well-known time-dependent Gross–Pitaevskii
equation (GPE) with an angular momentum rotation term [3,14,22]:
i�h
owðx; tÞ

ot
¼ � �h2

2m
r2 þ V ðxÞ þ NU 0jwj2 � XLz

� �
wðx; tÞ; x 2 R3; t P 0; ð1:1Þ
where x = (x, y, z)T is the Cartesian coordinate vector, w(x, t) is the complex-valued macroscopic wave
function, m is the atomic mass, �h is the Planck constant, N is the number of atoms in the condensate, X is
the angular velocity of rotating laser beam, V ðxÞ ¼ m

2
ðx2

xx2 þ x2
y y2 þ x2

z z2Þ with xx, xy and xz being the trap

frequencies in x-, y- and z-directions, respectively. U 0 ¼ 4p�h2as
m describes the interaction between atoms in the

condensate with as the s-wave scattering length, and Lz is the z-component of the angular momentum. It is
convenient to normalize the wave function by requiring
kwð�; tÞk2
:¼
Z

R3

jwðx; tÞj2 dx ¼ 1. ð1:2Þ
After proper non-dimensionalization and dimension reduction, we can obtain the following dimensionless
GPE with an angular momentum rotation term in the d-dimensions (d = 2, 3) [13,5,41]:
i
owðx; tÞ

ot
¼ � 1

2
r2wþ V dðxÞwþ bd jwj

2w� XLzw; x 2 Rd ; t P 0; ð1:3Þ

wðx; 0Þ ¼ w0ðxÞ; x 2 Rd with kw0k
2

:¼
Z

Rd
jw0ðxÞj

2 dx ¼ 1; ð1:4Þ
where Lz = �i(xoy � yox) and
V dðxÞ ¼
ðc2

xx2 þ c2
y y2Þ=2; d ¼ 2;

ðc2
xx2 þ c2

y y2 þ c2
z z2Þ=2; d ¼ 3

(
ð1:5Þ
with cx, cy and cz being constants.
In order to study effectively the dynamics of BEC, especially in the strong repulsive interaction regime, i.e.

bd� 1 in (1.3), an efficient and accurate numerical method is one of the key issues. For non-rotating BEC, i.e.
X = 0 in (1.3), many efficient and spectrally accurate numerical methods were proposed in the literatures
[7,6,11,4,12], and they were demonstrated that they are much better than the low-order finite difference
methods [15,32,31,16]. Thus, they were applied to study collapse and explosion of BEC in 3D [8] and
multi-component BEC [4] which are the very challenging problems in numerical simulation of BEC. Due
to the appearance of the angular momentum rotation term in the GPE (1.3), new numerical difficulties are
introduced. Currently, the numerical methods used in the physics literature for studying dynamics of rotating
BEC remain limited [25,28,38,39], and they usually are low-order finite difference methods. Recently, some
efficient and accurate numerical methods were designed for computing dynamics of rotating BEC. For
example, Bao et al. [5] proposed a numerical method for computing dynamics of rotating BEC by applying
a time-splitting technique for decoupling the nonlinearity in the GPE and adopting the polar coordinates
or cylindrical coordinates so as to make the coefficient of the angular momentum rotation term constant.
The method is time reversible, unconditionally stable, implicit but can be solved very efficiently, and conserves
the total density. It is of spectral accuracy in transverse direction, but usually of second or fourth-order accu-
racy in radial direction. Another numerical method is the leap-frog spectral method used for studying vortex
lattice dynamics in rotating BEC [41]. This method is explicit, time reversible, of spectral accuracy in space and
second-order accuracy in time. But it has a stability constraint for time step [41]. The aim of this paper is to
develop a numerical method which enjoys advantages of both the above two numerical methods. That is to
say, the method is explicit, unconditionally stable, time reversible, time transverse invariant, and of spectral
accuracy in space. We shall present such an efficient, unconditionally stable and accurate numerical method
for discretizing the GPE in a rotational frame by applying a time-splitting technique and an ADI technique,
and constructing appropriately spectral basis functions.
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The paper is organized as follows. In Section 2, we review some properties of GPE in a rotational frame
(1.3) including conservation laws and analytical solutions of condensate widths. In Section 3, we present a
new time-splitting Fourier pseudospectral method for efficient and accurate simulation of GPE (1.3) in 2D
and 3D. In Section 4, extensive numerical results are reported to demonstrate the efficiency and spectral
resolution in space of our new numerical method. Finally, some conclusions are drawn in Section 5.

2. Some properties of the GPE

For the convenience of the reader, in this section, we will review some properties of the GPE with an angu-
lar momentum rotation term (1.3), which will be used to test our new numerical method proposed in the next
section. First of all, the GPE (1.3) is time reversible and time transverse invariant. Second, it has at least two
important invariants which are the normalization of the wave function
NðwÞ ¼
Z

Rd
jwðx; tÞj2 dx �

Z
Rd
jwðx; 0Þj2 dx ¼ Nðw0Þ ¼ 1; t P 0; ð2:1Þ
and the energy
Eb;XðwÞ ¼
Z

Rd

1

2
jrwj2 þ V dðxÞjwj2 þ

bd

2
jwj4 � Xw�Lzw

� �
dx ¼ Ebd ;Xðw0Þ; t P 0; ð2:2Þ
where f* and Im(f) denote the conjugate and the imaginary part of the function f, respectively. Third, it was
proven that at least for radial symmetric trap in 2D or cylindrical symmetric trap in 3D, i.e., cx = cy in (1.3),
the angular momentum expectation and energy for non-rotating part are conserved [5], that is, for any given
initial data w0(x) in (1.4),
hLziðtÞ � hLzið0Þ; Eb;0ðwÞ � Eb;0ðw0Þ; t P 0; ð2:3Þ

where the angular momentum expectation which is a measure of the vortex flux is defined as
hLziðtÞ :¼
Z

Rd
w�ðx; tÞLzwðx; tÞdx ¼ i

Z
Rd

w�ðx; tÞðyox � xoyÞwðx; tÞdx; t P 0. ð2:4Þ
Other very useful quantities characterizing the dynamics of rotating BEC in 2D are the condensate width
defined as
dxðtÞ ¼
Z

Rd
x2jwðx; tÞj2 dx; dyðtÞ ¼

Z
Rd

y2jwðx; tÞj2 dx; drðtÞ ¼ dxðtÞ þ dyðtÞ. ð2:5Þ
As proven in [5], in 2D with a radial symmetric trap, i.e., d = 2 and cx = cy :¼ cr in (1.3), for any initial data
w0(x, y) in (1.4), we have for any t P 0
drðtÞ ¼
Eb;Xðw0Þ þ XhLzið0Þ

c2
r

½1� cosð2crtÞ� þ dð0Þr cosð2crtÞ þ
dð1Þr

2cr
sinð2crtÞ; ð2:6Þ
where dð0Þr :¼ drð0Þ ¼ dxð0Þ þ dyð0Þ and dð1Þr :¼ _drð0Þ ¼ _dxð0Þ þ _dyð0Þ with for a = x or y
dað0Þ ¼ dð0Þa ¼
Z

R2

a2jw0ðxÞj
2 dx;

_dað0Þ ¼ dð1Þa ¼ 2

Z
R2

a½�Xjw0j
2ðxoy � yoxÞaþ Imðw�0oaw0Þ�dx.
Furthermore, when the initial data w0(x, y) in (1.4) satisfies
w0ðx; yÞ ¼ f ðrÞeimh with m 2 Z and f ð0Þ ¼ 0 when m 6¼ 0; ð2:7Þ

with (r, h) being the polar coordinates in 2D, we have, for any t P 0,
dxðtÞ ¼ dyðtÞ ¼
1

2
drðtÞ ¼

Eb;Xðw0Þ þ mX
2c2

x

½1� cosð2cxtÞ� þ dð0Þx cosð2cxtÞ þ
dð1Þx

2cx
sinð2cxtÞ. ð2:8Þ
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These immediately imply that dr(t) is a periodic function with angular frequency doubling the trapping
frequency in 2D with a radial symmetric trap, and also dx(t) and dy(t) are periodic functions with frequency
doubling the trapping frequency provided that the initial data satisfies (2.7).

3. A time-splitting pseudospectral method for rotating BEC

In this section, we will present an explicit, unconditionally stable and spectrally accurate numerical method
to solve the GPE (1.3) for dynamics of rotating BEC.

Due to the external trapping potential Vd(x), the solution w(x, t) of (1.3) and (1.4) decays to zero exponen-
tially fast when |x|!1. Thus in practical computation, we always truncate the problem (1.3) and (1.4) into a
bounded computational domain with homogeneous Dirichlet boundary condition:
iotwðx; tÞ ¼ �
1

2
r2wþ ½V ðxÞ � iW ðxÞ�wþ bd jwj

2w� XLzw; x 2 Xx; t > 0; ð3:1Þ

wðx; tÞ ¼ 0; x 2 C ¼ oXx; t P 0; ð3:2Þ
wðx; 0Þ ¼ w0ðxÞ; x 2 �Xx; ð3:3Þ
where W(x) P 0 corresponds to a localized loss term [36] and V(x) = Vd(x) + Vp(x) with Vp(x) P 0 a
conservative repulsive pinning potential [36]. Here, we choose Xx = [a, b] · [c, d] in 2D, and resp.,
Xx = [a, b] · [c, d] · [e, f] in 3D, with |a|, b, |c|, d, |e| and f sufficiently large. The use of more sophisticated
radiation boundary conditions is an interesting topic that remains to be examined in the future.

3.1. Time-splitting

We choose a time step size Dt > 0. For n = 0, 1, 2, . . . , from time t = tn = nDt to t = tn+1 = tn + Dt, the GPE
(3.1) is first solved in two splitting steps. One solves first
iotwðx; tÞ ¼ �
1

2
r2wðx; tÞ � XLzwðx; tÞ ð3:4Þ
for the time step of length Dt, followed by solving:
iotwðx; tÞ ¼ ½V ðxÞ � iW ðxÞ�wðx; tÞ þ bd jwðx; tÞj
2wðx; tÞ; ð3:5Þ
for the same time step. For t 2 [tn, tn+1], multiplying (3.5) by w*, the conjugate of w, we get
iw�ðx; tÞotwðx; tÞ ¼ ½V ðxÞ � iW ðxÞ�jwðx; tÞj2 þ bd jwðx; tÞj
4. ð3:6Þ
Subtracting the conjugate of (3.6) from (3.6) and multiplying by �i, one obtains
d

dt
jwðx; tÞj2 ¼ w�otwþ wotw

� ¼ �2W ðxÞjwðx; tÞj2. ð3:7Þ
Solving (3.7), we get
jwðx; tÞj2 ¼ e�2W ðxÞðt�tnÞjwðx; tnÞj2; tn 6 t 6 tnþ1. ð3:8Þ

Substituting (3.8) into (3.5), we obtain
iotwðx; tÞ ¼ ½V ðxÞ � iW ðxÞ�wðx; tÞ þ bde�2W ðxÞðt�tnÞjwðx; tnÞj2wðx; tÞ. ð3:9Þ

Integrate (3.9) from tn to t, we find for x 2 Xx and tn 6 t 6 tn+1:
wðx; tÞ ¼
e�i½V ðxÞþbd jwðx;tnÞj2�ðt�tnÞwðx; tnÞ; W ðxÞ ¼ 0;

wðx;tnÞ
eW ðxÞðt�tnÞ e

�i½V ðxÞðt�tnÞþbd jwðx;tnÞj2ð1�e�2W ðxÞðt�tnÞÞ=2W ðxÞ�; W ðxÞ > 0.

(
ð3:10Þ
To discretize (3.4) in space, compared with non-rotating BEC [7,11,6], i.e. X = 0 in (1.3), the main difficulty is
that the coefficients in Lz are not constants which cause big trouble in applying sine or Fourier pseudospectral
discretization. Due to the special structure in the angular momentum rotation term Lz (1.5), we will apply the
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alternating direction implicit (ADI) technique and decouple the operator�1
2
r2 � XLz into two one dimensional

operators such that each operator becomes a summation of terms with constant coefficients in that dimension.
Therefore, they can be discretized in space by Fourier pseudospectral method and the ODEs in phase space can
be integrated analytically. The details for discretizing (3.4) in 2D and 3D will be presented in the next two
subsections, respectively.
3.2. Discretization in 2D

When d = 2 in (3.4), we choose mesh sizes Dx > 0 and Dy > 0 with Dx = (b � a)/M and Dy = (d � c)/N for
M and N even positive integers, and let the grid points be
xj ¼ aþ jDx; j ¼ 0; 1; 2; . . . ;M ; yk ¼ cþ kDy; k ¼ 0; 1; 2; . . . ;N .
Let wn
jk be the approximation of w(xj, yk, tn) and wn be the solution vector with component wn

jk.
From time t = tn to t = tn+1, we solve (3.4) first
iotwðx; tÞ ¼ �
1

2
oxxwðx; tÞ � iXyoxwðx; tÞ; ð3:11Þ
for the time step of length Dt, followed by solving:
iotwðx; tÞ ¼ �
1

2
oyywðx; tÞ þ iXxoywðx; tÞ; ð3:12Þ
for the same time step. The detailed discretizations of (3.11) and (3.12) are shown in Appendix A.
3.3. Discretization in 3D

When d = 3 in (3.4), we choose mesh sizes Dx > 0, Dy > 0 and Dz > 0 with Dx = (b � a)/M, Dy = (d � c)/N
and Dz = (f � e)/L for M, N and L even positive integers, and let the grid points be
xj ¼ aþ jDx; 0 6 j 6 M ; yk ¼ cþ kDy; 0 6 k 6 N ; zl ¼ eþ lDz; 0 6 l 6 L.
Let wn
jkl be the approximation of w(xj, yk, zl, tn) and wn be the solution vector with component wn

jkl.
Similar as those for 2D case, from time t = tn to t = tn+1, we solve (3.4) first
iotwðx; tÞ ¼ � 1

2
oxx �

1

4
ozz � iXyox

� �
wðx; tÞ; ð3:13Þ
for the time step of length Dt, followed by solving:
iotwðx; tÞ ¼ � 1

2
oyy �

1

4
ozz þ iXxoy

� �
wðx; tÞ; ð3:14Þ
for the same time step. The detailed discretizations of (3.13) and (3.14) are shown in Appendix B.
3.4. Stability

We define the usual discrete l2-norm for the solution wn as
kwnkl2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

M
d � c

N

XM�1

j¼0

XN�1

k¼0

jwn
jkj

2

vuut ; ð3:15Þ
for d = 2, and for d = 3
kwnkl2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

M
d � c

N
f � e

L

XM�1

j¼0

XN�1

k¼0

XL�1

l¼0

jwn
jklj

2

vuut . ð3:16Þ
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For the stability of the time-splitting spectral approximations (A.7) for 2D and (B.1) for 3D, we have the fol-
lowing lemma, which shows that the total density is conserved when W(x) ” 0, and resp. decreased when
W(x) > 0, in the discretized level.

Lemma 3.1. The time-splitting spectral schemes (A.7) for 2D and (B.1) for 3D GPE with an angular momentum

rotation term are unconditionally stable. In fact, for any mesh sizes Dx > 0, Dy > 0 and Dz > 0, and time step size

Dt > 0,
Table
Spatia

h

b2 = 2
b2 = 5
b2 = 1
kwnkl2 6 kwn�1kl2 6 kw0kl2 ¼ kw0kl2 ; n ¼ 1; 2; . . . . ð3:17Þ

In addition, if W(x) ” 0 in (3.1), then we have
kwnkl2 � kw0kl2 ¼ kw0kl2 ; n ¼ 1; 2; . . . . ð3:18Þ
Proof. Follows the line of the analogous results for the linear and nonlinear Schrödinger equations in [6,9,10,
7,12]. h
4. Numerical results

In this section, we first test the accuracy of our new numerical method (A.7) for 2D and (B.1) for 3D and
compare our numerical results with the analytical results reviewed in Section 2. Then we apply our new numer-
ical method to study vortex lattice dynamics in rotating BEC by changing the trapping frequencies and to gen-
erate a giant vortex by introducing a localized loss term. Our aim is not to find new physics phenomena but to
demonstrate the efficiency and high resolution of our new numerical method.

4.1. Accuracy test

To test the accuracy of our numerical method in 2D, we take X = 0.7 in (1.3). The initial condition in (1.4)
is taken as
w0ðx; yÞ ¼
ðcxcyÞ

1
4

p
1
2

e�ðcxx2þcy y2Þ=2; x ¼ ðx; yÞT 2 R2. ð4:1Þ
We take cx = 1.0 and cy = 2.0 in (1.3) and (4.1). Similar example was used in [5,41] for testing numerical accu-
racy of different numerical methods for rotating BEC. The GPE (1.3) is solved on [�8, 8] · [�8, 8], i.e. we take
a = �8, b = 8, c = �8 and d = 8. Let w be the exact solution which is obtained numerically by using our method
with a very fine mesh and small time step, e.g. Dx ¼ Dy ¼ 1

64
and Dt = 0.0001, and w(Dx,Dy,Dt) be the numerical

solution obtained with the mesh size (Dx,Dy) and time step Dt.
First, we test the spectral accuracy in space by choosing a very small time step Dt = 0.0001, and solving the

problem for each fixed b2 with different mesh size Dx = Dy so that the discretization errors in time can be
neglected comparing to those in space. The errors kwðtÞ � wðDx;Dy;DtÞðtÞkl2 at t = 0.5 are shown in Table 1 for
different values b2 and h = Dx = Dy.

Next, we test the second-order accuracy in time. Table 2 lists the errors at t = 0.5 for different values of b2

and time steps Dt with a fine mesh in space, i.e. Dx = Dy = 1/16.
Similarly, to test the accuracy of our numerical method in 3D, we take X = 0.7 in (1.3). The initial condition

in (1.4) is taken as
1
l discretization errors kwðtÞ � wðDx;Dy;DtÞðtÞkl2 at t = 0.5 in 2D

1/2 1/4 1/8

0 2.68E�2 6.5E�5 3.41E�10
0 0.1315 2.01E�3 5.91E�8
00 0.4287 1.94E�2 8.89E�6



Table 2
Temporal discretization errors kwðtÞ � wðDx;Dy;DtÞðtÞkl2 at t = 0.5 in 2D

Dt 1/40 1/80 1/160 1/320 1/640

b2 = 20 7.86E�4 1.95E�4 4.86E�5 1.21E�5 3.02E�6
b2 = 50 2.95E�3 7.24E�4 1.80E�4 4.49E�5 1.12E�5
b2 = 100 7.98E�3 1.98E�3 4.76E�4 1.19E�4 2.96E�5

Table
Spatia

h

b3 = 2
b3 = 5
b3 = 1
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w0ðx; y; zÞ ¼
ðcxcyczÞ

1
4

p
3
42

e�ðcxx2þcy y2þcy z2Þ=2; x ¼ ðx; y; zÞT 2 R3. ð4:2Þ
We take cx = cy = cz = 1.0 in (1.3) and (4.2), and solve the GPE (1.3) in 3D on [�8, 8] · [�8, 8] · [�8, 8].
Again let w be the exact solution which is obtained numerically by using our method with a fine mesh and
small time step, e.g. Dx ¼ Dy ¼ Dz ¼ 1

8
and Dt = 0.0001, and w(Dx,Dy,Dz,Dt) be the numerical solution obtained

with mesh size (Dx, Dy, Dz) and time step Dt. Table 3 shows the spatial discretization errors kwðtÞ�
wðDx;Dy;Dz;DtÞðtÞkl2 at t = 0.5 with Dt = 0.0001 for different values b3 and mesh sizes h = Dx = Dy = Dz. Table
4 lists the errors at t = 0.5 for different values of b3 and time steps Dt with a fine mesh in space, i.e.
Dx = Dy = Dz = 1/8.

From Tables 1–4, we can draw the following conclusions: (i) The method (A.7) or (B.1) is of spectral accu-
racy in space and second-order accuracy in time. (ii) For a given fixed mesh size and time step, when bd is
increasing, the errors are increasing too. This implies that when the number of atoms in the condensate is
increasing, i.e. bd is increasing, more grid points and smaller time step are needed in practical computation
in order to achieve a given accuracy.

Furthermore, Fig. 1 shows time evolution of the normalization N(w)(t), energy Eb,X(w)(t), angular momen-
tum expectation ÆLzæ(t) and condensate widths for the above parameters setup in 2D and 3D.

From Fig. 1, we can see that: (i) The normalization is conserved in both cases which confirms (2.1). (ii) The
energy is not conserved in the discretized level, but the perturbation is very small, e.g. less than 5% (cf. (a), (c),
(e) and (g) of Fig. 1). (iii) The angular momentum expectation is conserved when cx = cy = 1 (cf. (a) and (e) of
Fig. 1) which confirms the analytical result (2.3), and oscillates when 1 = cx 6¼ cy = 2 (cf. (c) and (g) of Fig. 1).
(iv) The condensate widths dx(t), dy(t) and dr(t) are periodic functions when cx = cy = 1 which confirm the ana-
lytical result (2.6) (cf. (b) of Fig. 1), and are not periodic functions when 1 = cx 6¼ cy = 2 (cf. (d) and (h) of
Fig. 1).

4.2. Dynamics of a vortex lattice in rotating BEC

In this subsection, we numerically study the dynamics of a vortex lattice in rotating BEC by changing trap
frequencies. This study was motivated by the recent experiment [20] in which the frequencies of trapping
potential of a stable BEC were changed [20]. One of the most striking observation in the experiment is that
the condensate contains sheet-like structures rather than individual vortex cores in the dynamics by deforming
the static trap [20]. By using the hydrodynamic forms of the GPE (1.3) in Thomas–Fermi regime, Cozzin and
Stringari [18] tried to study this phenomena theoretically. But they did not find the sheet-like structures by
changing the trap frequencies in their theoretical study. Here, we study this phenomena by directly simulating
the GPE (1.3) using our new numerical method.

We take d = 2, b2 = 100 and X = 0.99 in (1.3). The initial data w0(x) in (1.4) is chosen as the ground state of
(1.3) with d = 2, X = 0.99, b2 = 100 and cx = cy = 1, which is computed numerically by the normalized gradient
3
l discretization errors kwðtÞ � wðDx;Dy;D;Dz;tÞðtÞkl2 at t = 0.5 in 3D

1 1/2 1/4

0 5.78E�2 1.27E�3 2.38E�8
0 0.1515 9.50E�3 2.45E�6
00 0.3075 3.88E�2 7.08E�5



Table 4
Temporal discretization errors kwðtÞ � wðDx;Dy;Dz;DtÞðtÞkl2 at t = 0.5 in 3D

Dt 1/40 1/80 1/160 1/320 1/640

b3 = 20 1.778E�4 4.435E�5 1.108E�5 2.767E�6 6.897E�7
b3 = 50 6.266E�4 1.559E�4 3.892E�5 9.718E�6 2.422E�6
b3 = 100 1.63E�3 4.0379E�4 1.0069E�4 2.5141E�5 6.265E�6
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Fig. 1. Time evolution of the normalization N(t) :¼ N(w)(t), energy Eb,X(w)(t), angular momentum expectation ÆLzæ(t) (left column), and
condensate widths dx(t), dy(t) and dr(t) (right column). Results in 2D for cx = cy = 1 (a and b), and cx = 1 and cy = 2 (c and d); and results
in 3D for cx = cy = cz = 1 (e and f), and cx = 1, cy = 2 and cz = 1.5 (g and h).
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flow proposed in [13]. In the ground state, there are about 61 vortices in the vortex lattice (cf. Fig. 2). We solve
the problem on Xx = [�24, 24] · [�24, 24] with mesh size Dx = Dy = 3/16 and time step Dt = 0.001.

First, we study free expansion of the quantized vortex lattice. In general, the size of a stable vortex lattice in
a BEC is too small to visualize it. In experiments, by removing the trap, i.e., letting the vortex lattice freely
expands, one can obtain an enlarged vortex lattice so as to take a photo for it [20]. Of course, they hope
the vortex structure does not change during the free expansion. Thus, theoretical study of free expansion is
very helpful for experiments. We start with the stable BEC and remove the trapping at time t = 0, i.e. choosing
cx = cy = 0 in (1.3). Similar numerical study was also carried out in [2] by a different numerical method with
much less number of vortices in the lattice. Fig. 2 shows image plots of the density |w(x, t)|2 at different times
for the free expansion of the vortex lattice. From the figure, we can see that when the trap is removed at t = 0,
the vortex lattice will expand with time and the vortex structure as well as the rotational symmetry is kept
during the expansion. This gives a numerical justification for the free expansion used in BEC experiments.

Next, we study dynamics of the quantized vortex lattice by changing the trap frequencies. We study six dif-
ferent cases: (I) cx = 1, cy = 1.5; (II) cx = 1, cy = 0.75; (III) cx = 1.5, cy = 1; (IV) cx = 0.75, cy = 1; (V) cx ¼ffiffiffiffiffiffiffi

1:2
p

, cy ¼
ffiffiffiffiffiffiffi
0:8
p

; (VI) cx ¼
ffiffiffiffiffiffiffi
1:4
p

, cy ¼
ffiffiffiffiffiffiffi
0:6
p

. Similar numerical study was also carried out in [2] by a different
method with much less number of vortices in the lattice. Fig. 3 shows image plots of the density |w(x, t)|2 at
different times for cases I and II for changing frequencies in y-direction only. Fig. 4 shows similar results
for cases III and IV for changing frequencies in x-direction only, and Fig. 5 for cases V and VI for changing
frequencies in both x- and y-directions.

In Figs. 3–5, initially the condensate is assumed to be in its ground state which is a vortex lattice with about
61 vortices. From the numerical results presented here, when the trap frequencies are changed at t = 0, we find
that: (i) cases I and II correspond to changing trap frequency in y-direction only. The condensate initially
starts to contract (cf. (a) of Fig. 3) or expand (cf. (b) of Fig. 3) in y-direction since the trap frequency in
y-direction is increasing or decreasing at t = 0. (ii) Cases III and IV correspond to changing trap frequency
in x-direction only. Similar results are observed (cf. (a) and (b) of Fig. 4). (iii) Cases V and VI correspond
to increasing and decreasing the trapping frequencies in x and y-directions by the same value, i.e., �, respec-
tively [18]. The condensate initially starts to contract and expand in x and y-directions, respectively (cf. Fig. 5).
Fig. 2. Image plots of the density |w(x, t)|2 on [�18, 18] · [�18, 18] at different times t = 0, 0.75, 1.5, 2.0 and 2.75 (from left to right) for the
free expansion of a quantized vortex lattice.

Fig. 3. Image plots of the density |w(x, t)|2 on [�18, 18] · [�18, 18] at different times t = 0, 2.0, 4.0, 6.0, and 8.0 (from left to right) by
changing frequency in y-direction only from cy = 1 to: (a) cy = 1.5; (b) cy = 0.75.



Fig. 4. Image plots of the density |w(x, t)|2 on [�18, 18] · [�18, 18] at different times t = 0, 2.0, 4.0, 6.0, and 8.0 (from left to right) by
changing frequency in x-direction only from cx = 1 to: (a) cx = 1.5; (b) cx = 0.75.
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(iv) We numerically observed the remarkable sheet-like vortices in our numerical results (cf. Figs. 3 and 5).
One can compare our numerical results in Figs. 3 and 5 with the experimental results, e.g. Fig. 4 in [20],
and find very good qualitative agreement in sheet-like vortex lattice formation. Furthermore, we also found
that when � is bigger in cases V and VI, the sheet-like vortices appear earlier.

4.3. Generation of giant vortex in rotating BEC

In this subsection, we numerically generate a giant vortex in rotating BEC from its ground state by intro-
ducing a localized loss term [21]. This study was motivated by the recent experiment [21] and theoretical study
Fig. 5. Image plots of the density |w(x, t)|2 on [�18, 18] · [�18, 18] at different times by changing trapping frequencies from cx = 1, cy = 1
to cx ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ �
p

, cy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0� �
p

. (a) With � = 0.2 for times t = 0, 2, 3, 4, 5, 6, 7 and 8 (from left to right); (b) with � = 0.4 for times t = 0, 1.0,
1.5, 2.0, 2.5, 3.0, 4.0 and 4.5.
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[36] in which the giant vortex formation arises as a dynamics effect. We take d = 2, b2 = 100, Vp(x) ” 0 and
X = 0.99 in (3.1). The initial data w0(x) in (3.3) is chosen as the ground state of (1.3) with d = 2, X = 0.99,
b2 = 100 and cx = cy = 1, which is computed numerically by the normalized gradient flow proposed in [13].
The localized loss term in (3.1) is chosen as a Gaussian function of the form [36]
Fig. 6.
to righ
W ðx; yÞ ¼ w0 exp �ðx� x0Þ2 þ ðy � y0Þ
2

r2
0

" #
; ðx; yÞ 2 R2; ð4:3Þ
where w0, x0, y0 and r0 are constants. We take w0 = 1 and r0 ¼
ffiffiffi
7
p

=2 in (4.3) and solve the problem (3.1)–(3.3)
on Xx = [�24, 24] · [�24, 24] with mesh size Dx = Dy = 3/16 and time step Dt = 0.001. Fig. 6 shows image
plots of the density |w(x, t)|2 at different times for different values of (x0, y0).

From Fig. 6, we can see that the giant vortex lattice is generated due to the dynamic effect in a rotating
BEC. The center of the giant vortex is the same as the center of the localized loss term and the size of the giant
Image plots of the density |w(x, t)|2 on [�12, 12] · [�12, 12] at different times t = 0, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 (from left
t) with w0 = 1 and r0 ¼

ffiffi
7
p

2
in (4.3) for generating giant vortices. (a) x0 = 0, y0 = 0; (b) x0 = 1.5, y0 = 0; (c) x0 = 1.5, y0 = 1.
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vortex depends on the values of r0 and w0. One can compare our numerical results in Fig. 6 with the exper-
imental results, e.g., Fig. 1 in [21], and the theoretical study, e.g., Fig. 1 in [36], and find very good qualitative
agreement in giant-vortex formation.
5. Conclusions

We have proposed a new time-spitting Fourier pseudospectral method for computing dynamics of rotating
BEC based on an efficient approximation of GPE with an angular momentum rotation term. The new method
is explicit, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. It is
time reversible and time transverse invariant in the discretized level, just as the original GPE does, and con-
serves the total density in the discretized level. The efficient and accurate numerical method was applied to
study dynamics of a quantized vortex lattice in rotating BEC. In the future, we plan to extend the idea for
constructing the new numerical method for one component rotating BEC to multi-component rotating
BEC and spinor dynamics in a rotational frame, and apply the method to study vortex line dynamics in rotat-
ing BEC in 3D.
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Appendix A. Discretization in 2D

For each fixed y, the operator in Eq. (3.11) is in x-direction with constant coefficients and thus we can dis-
cretize it in x-direction by a Fourier pseudospectral method. Assume
wðx; y; tÞ ¼
XM=2�1

p¼�M=2

ŵpðy; tÞ exp½ilpðx� aÞ�; ðA:1Þ
where lp ¼ 2pp
b�a and ŵpðy; tÞ is the Fourier coefficient for the pth mode in x-direction. Plugging (A.1) into (3.11),

noticing the orthogonality of the Fourier functions, we obtain for �M
2
6 p 6 M

2
� 1 and c 6 y 6 d:
iotŵpðy; tÞ ¼
1

2
l2

p þ Xylp

� �
ŵpðy; tÞ; tn 6 t 6 tnþ1. ðA:2Þ
The above linear ODE can be integrated in time exactly and we obtain
ŵpðy; tÞ ¼ exp �i
1

2
l2

p þ Xylp

� �
ðt � tnÞ

� �
ŵpðy; tnÞ; tn 6 t 6 tnþ1. ðA:3Þ
Similarly, for each fixed x, the operator in Eq. (3.12) is in y-direction with constant coefficients and thus we
can discretize it in y-direction by a Fourier pseudospectral method. Assume
wðx; y; tÞ ¼
XN=2�1

q¼�N=2

ŵqðx; tÞ exp½ikqðy � cÞ�; ðA:4Þ
where kq ¼ 2qp
d�c and ŵqðx; tÞ is the Fourier coefficient for the qth mode in y-direction. Plugging (A.4) into (3.12),

noticing the orthogonality of the Fourier functions, we obtain for �N
2
6 q 6 N

2
� 1 and a 6 x 6 b:
iotŵqðx; tÞ ¼
1

2
k2

q � Xxkq

� �
ŵqðx; tÞ; tn 6 t 6 tnþ1. ðA:5Þ
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Again the above linear ODE can be integrated in time exactly and we obtain
ŵqðx; tÞ ¼ exp �i
1

2
k2

q � Xxkq

� �
ðt � tnÞ

� �
ŵqðx; tnÞ; tn 6 t 6 tnþ1. ðA:6Þ
From time t = tn to t = tn+1, we combine the splitting steps via the standard second-order Strang splitting
[37,4,12]:
wð1Þjk ¼
XM=2�1

p¼�M=2

e�iDtðl2
pþ2XyklpÞ=4 dðwn

kÞpeilpðxj�aÞ; 0 6 j 6 M ; 0 6 k 6 N ;

wð2Þjk ¼
XN=2�1

q¼�N=2

e�iDtðk2
q�2XxjkqÞ=4 dðwð1Þj Þqeikqðyk�cÞ; 0 6 k 6 N ; 0 6 j 6 M ;

wð3Þjk ¼
e�iDt½V ðxj;ykÞþb2jw

ð2Þ
jk j

2�wð2Þjk ; W ðxj; ykÞ ¼ 0;

wð2Þ
jk

eDtW ðxj ;yk Þ e
�i½DtV ðxj;ykÞþb2jw

ð2Þ
jk j

2ð1�e�2DtW ðxj ;yk ÞÞ=2W ðxj;ykÞ�; W ðxj; ykÞ > 0;

8><>:
wð4Þjk ¼

XN=2�1

q¼�N=2

e�iDtðk2
q�2XxjkqÞ=4 dðwð3Þj Þqeikqðyk�cÞ; 0 6 k 6 N ; 0 6 j 6 M ;

wnþ1
jk ¼

XM=2�1

p¼�M=2

e�iDtðl2
pþ2XyklpÞ=4 dðwð4Þk Þpeilpðxj�aÞ; 0 6 j 6 M ; 0 6 k 6 N ;

ðA:7Þ
where for each fixed k, dðwa
kÞp ðp ¼ �M=2; . . . ;M=2� 1Þ with a an index, the Fourier coefficients of the vector

wa
k ¼ ðw

a
0k;w

a
1k; . . . ;wa

ðM�1ÞkÞ
T, are defined as
dðwa
kÞp ¼

1

M

XM�1

j¼0

wa
jke�ilpðxj�aÞ; p ¼ �M

2
; . . . ;

M
2
� 1 ðA:8Þ
similarly, for each fixed j, dðwa
j Þq ðq ¼ �N=1; . . . ;N=2� 1Þ, the Fourier coefficients of the vector wa

j ¼
ðwa

j0;w
a
j1; . . . ;wa

jðN�1ÞÞ
T, are defined as
dðwa
j Þq ¼

1

N

XN�1

k¼0

wa
jke�ikqðyk�cÞ; q ¼ �N

2
; . . . ;

N
2
� 1. ðA:9Þ
For the algorithm (A.7) presented in Appendix A, the total memory requirement is O(MN) and the total com-
putational cost per time step is O(MN ln(MN)). The scheme is time reversible when W(x) ” 0, just as it holds
for the GPE (1.3), i.e. the scheme is unchanged if we interchange n M n + 1 and Dt M �Dt in (A.7). Also, a
main advantage of the numerical method is its time-transverse invariance when W(x) ” 0, just as it holds for
the GPE (1.3) itself. If a constant a is added to the external potential V, then the discrete wave functions wnþ1

jk

obtained from (A.7) get multiplied by the phase factor e�ia(n+1)Dt, which leaves the discrete quadratic obser-
vable jwnþ1

jk j
2 unchanged. This property does not hold for the finite difference scheme [25,39], the leap-frog

spectral method [41] and the efficient discretization proposed in [5] for GPE with an angular momentum term.
Appendix B. Discretization in 3D

For each fixed y, the operator in Eq. (3.13) is in x and z-directions with constant coefficients and thus we
can discretize it in x and z-directions by a Fourier pseudospectral method. Similarly, for each fixed x, the oper-
ator in Eq. (3.14) is in y and z-directions with constant coefficients and thus we can discretize it in y and
z-directions by a Fourier pseudospectral method. The discretizations of (3.13) and (3.14) are similar as those
for (3.11) and (3.12), respectively, and they are omitted here. For simplicity and convenience of the reader,
here we only present the algorithm for 3D GPE with an angular momentum rotation term (1.3) with
0 6 j 6M, 0 6 k 6 N and 0 6 l 6 L:



W. Bao, H. Wang / Journal of Computational Physics 217 (2006) 612–626 625
wð1Þjkl ¼
XM=2�1

p¼�M=2

XL=2�1

s¼�L=2

e�iDtð2l2
pþc2

sþ4XyklpÞ=8 dðwn
kÞps eilpðxj�aÞ eicsðzl�eÞ;

wð2Þjkl ¼
XN=2�1

q¼�N=2

XL=2�1

s¼�L=2

e�iDtð2k2
qþc2

s�4XxjkqÞ=8 dðwð1Þj Þqs eikqðyk�cÞ eicsðzl�eÞ;

wð3Þjkl ¼
e�iDt½V ðxj;yk ;zlÞþb3jw

ð2Þ
jkl j

2�wð2Þjkl ; W ðxj; yk; zlÞ ¼ 0;

wð2Þjkl

eDtW ðxj ;yk ;zlÞ exp½�iðDtV ðxj; yk; zlÞ þ b3jw
ð2Þ
jkl j

2ð1� e�2DtW ðxj;yk ;zlÞÞ=2W ðxj; yk; zlÞÞ�; W ðxj; yk; zlÞ > 0;

8><>:
wð4Þjkl ¼

XN=2�1

q¼�N=2

XL=2�1

s¼�L=2

e�iDtð2k2
qþc2

s�4XxjkqÞ=8 dðwð3Þj Þqse
ikqðyk�cÞ eicsðzl�eÞ;

wnþ1
jkl ¼

XM=2�1

p¼�M=2

XL=2�1

s¼�L=2

e�iDtð2l2
pþc2

sþ4XyklpÞ=8 dðwð4Þk Þps eilpðxj�aÞ eicsðzl�eÞ; ðB:1Þ
where for each fixed k, dðwa
kÞps ð�M=2 6 p 6 M=2� 1; �L=2 6 s 6 L=2� 1Þ with a an index, the Fourier

coefficients of the vector wa
jkl ð0 6 j < M ; 0 6 l < LÞ, are defined as
dðwa
kÞps ¼

1

ML

XM�1

j¼0

XL�1

l¼0

wa
jkle
�ilpðxj�aÞ e�icsðzl�eÞ; �M

2
6 p <

M
2
; � L

2
6 s <

L
2

similarly, for each fixed j, dðwa
j Þqs ð�N=1 6 q 6 N=2� 1; �L=2 6 s 6 L=2� 1Þ with a an index, the Fourier

coefficients of the vector wa
jkl ðk ¼ 0; . . . ;N ; l ¼ 0; . . . ; LÞ, are defined as
dðwa
j Þqs ¼

1

NL

XN�1

m¼0

XL�1

l¼0

wa
jkle
�ikqðyk�cÞ e�icsðzl�eÞ; �N

2
6 q <

N
2
; � L

2
6 s <

L
2

with cs ¼ 2ps
f�e for s = �L/2, . . . ,L/2 � 1.

For the discretization in 3D, the total memory requirement is O(MNL) and the total computational cost
per time step is O(MNL ln(MNL)). Furthermore, the discretization is time reversible and time transverse
invariant in the discretized level when W(x) ” 0.
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